The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Orthogonal Frequency Division Multiplexing(93hit)

61-80hit(93hit)

  • Low-Loading-Delay Parallel Adaptive Loading for Reducing Transmit Power of OFDM System

    Ming LEI  Hiroshi HARADA  

     
    PAPER

      Vol:
    E90-A No:7
      Page(s):
    1300-1311

    The conventional successive adaptive loading algorithm, represented by Hughes-Hartogs algorithm, can be used to reduce the transmit power of orthogonal frequency division multiplexing (OFDM) system. However, two major disadvantages exist for this kind of algorithm: One is the long loading time delay caused by the bit-to-bit loading, i.e., only one bit is loaded in every iteration; the other is that there is no flexibility in freely pre-defining the candidate modulation set before the loading is finished. In order to solve these problems, we propose the low-loading-delay parallel adaptive loading algorithms aiming at reducing the transmit power under the condition that the data throughput and error rate are maintained to target values. Two improvements are achieved by the new algorithm. One is that it divides the successive adaptive loading into several independent small-scale loading (SS-Loading) procedures. "SS-Loading" can be performed in parallel mode. To support this, we propose two subband division methods (successive and sorted subband divisions). The simulation results show that for a large range of subband number (1-128), the loading time delay can be remarkably decreased (especially for the parallel adaptive loading based on sorted subband division, i.e., SRT parallel adaptive loading algorithm) with neglectable power efficiency loss, compared with Hughes-Hartogs algorithm. The second improvement is that the new algorithm allows us to pre-define the candidate modulation set, which provide flexibility for the system design, e.g. we can exclude those rarely used modulation modes. We also reveal that Hughes-Hartogs algorithm is actually a special case of the newly proposed algorithm.

  • Adaptive Linear Symbol Detection for OFDM Systems in Time-Frequency-Selective Fading Channels

    Hoojin LEE  Joonhyuk KANG  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    685-688

    Time-frequency-selective, equivalently time-variant multipath, fading channels in orthogonal frequency division multiplexing (OFDM) systems introduce intercarrier interference (ICI), resulting in severe performance degradation. To suppress the effect of ICI, several symbol detection methods have been proposed, all of which are based on the observation that most of the ICI's power is distributed near the desired subcarrier. However, these methods usually ignore the channel variation in a OFDM symbol block by fixing the number of considered ICI terms. Therefore, we propose a novel frequency-domain symbol detection method with moderate complexity, which adaptively determines the number of ICI terms within each OFDM symbol block.

  • Admission Control Utilizing Region-Based Channel Capacity

    Sungjin LEE  Sanghoon LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    417-420

    This paper presents an admission control technique for multi-carrier systems with an FRF(frequency reuse factor) of 1. The FRF of 1 is very attrative for more improved channel throughput but the forward link capacity is rapidly decreased at the cell boundary region due to the increase in the ICI(InterCell Interference). By measuring a region-based channel capacity and deriving a closed form of blocking probability, a QoS(Quality of Service) maintenance technique and mobility model can be acquired. In the simulation, the proposed scheme demonstrates a blocking probability reduction of up to 40% compared to the cell-based link capacity scheme.

  • Complexity-Reduced Adaptive Subchannel, Bit, and Power Allocation Algorithm and Its Throughput Analysis for Cellular OFDM System

    Kwang Man OK  Chung Gu KANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    269-276

    We introduce an adaptive subchannel, bit, and power allocation (ASBPA) algorithm to maximize the bandwidth efficiency of the mobile communication system that use orthogonal frequency division multiplexing (OFDM). We propose a suboptimal rate adaptive ASBPA algorithm that guarantees fairness in resource allocation and overcomes inherent co-channel interference (CCI) in the cellular system. Furthermore, we evaluate the maximum possible bandwidth efficiency of the cellular OFDM system achieved by the ASBPA algorithm which is practical to implement. Our simulation results show that the proposed algorithm outperforms the existing ones and achieves the cellular bandwidth efficiency of up to 5 b/s/Hz/cell. We also investigate some of the conditions that govern the bandwidth efficiency of the cellular OFDM system using the proposed ASBPA algorithm.

  • Reverse Link Capacity Analysis over Multi-Cell Environments

    Sungjin LEE  Sanghoon LEE  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E89-B No:12
      Page(s):
    3479-3482

    This paper presents a numerical analysis of reverse link capacity by obtaining a closed form of ICI (InterCell Interference) over OFDM (Orthogonal Frequency Division Multiplexing)-based broadband wireless networks. In the analysis, shadowing factors are taken into account for determining the home BS (Base Station) of each MS (Mobile Station) over multicell environments. Under the consideration, a more accurate analysis of link capacity can be performed compared to Gilhousen's approximation. In the numerical results, it turns out that the actual interference is lower than Gilhousen's approximation with a decrease of around 20% in the interference.

  • A Novel Frequency Offset Estimation for OFDM Systems

    Jong Yoon HWANG  Kwang Soon KIM  Keum-Chan WHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:11
      Page(s):
    3132-3135

    In this letter, a blind frequency offset estimation algorithm is proposed for OFDM systems. The proposed method exploits the intrinsic phase shift between neighboring samples in a single OFDM symbol, incurred by a frequency offset. The proposed algorithm minimizes a novel cost function, which is the squared error of the candidate frequency offset compensated signals from two different observation windows. Also, the solution of the proposed algorithm is given by an explicit equation, which does not require any iterative calculation. It is shown that the performance of the proposed method is better than those of the conventional methods, especially in the presence of multipath channels. This is due to the fact that the proposed method is insensitive to inter-symbol interference (ISI).

  • Single Carrier Frequency-Domain Equalization with Transmit Diversity over Mobile Multipath Channels

    Tae-Won YUNE  Chan-Ho CHOI  Gi-Hong IM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2050-2060

    This paper discusses a cyclic prefixed single carrier frequency-domain equalization (SC-FDE) scheme with two types of transmit diversity. Firstly, we propose a SC-FDE system with space-frequency block coding (SFBC). The transmit sequence of the proposed system is designed to have spatial and frequency diversities, which is equivalent to the SFBC. The corresponding combining receiver is derived under a minimum mean square error (MMSE) criterion. It is shown that the proposed system significantly outperforms the SC-FDE system with space-time block coding (STBC) over fast fading channels, while providing lower computational complexity than orthogonal frequency division multiplexing (OFDM) combined with SFBC. We verify the performance of two-branch transmit diversity systems including the proposed one through bit error rate (BER) analysis. Secondly, as a scheme that combines STBC and SFBC, a space-time-frequency block code (STFBC) SC-FDE system is presented. Computer simulation results show that the proposed STFBC SC-FDE system has better immunity to the distortion caused by both fast fading and severe frequency selective fading, compared to the SC-FDE system with the STBC or the SFBC scheme. Complexity analysis is also conducted to compare their computational loads of the transceiver. It is shown that the proposed STFBC SC-FDE system has lower computational complexity than the STFBC OFDM system.

  • Constant Modulus Based Blind Channel Estimation for OFDM Systems

    Zhigang CHEN  Taiyi ZHANG  Yatong ZHOU  Feng LIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1705-1708

    A novel blind channel estimation scheme is proposed for OFDM systems employing PSK modulation. This scheme minimizes the number of possible channels by exploiting the constant modulus property, chooses a best fit over the possible channels by exploiting the finite alphabet property of information signals, and achieves competitive performance with low computational complexity. Results comparing the new scheme with the finite-alphabet based channel estimation are presented.

  • Low-Complexity ICI Cancellation in Frequency Domain for OFDM Systems in Time-Varying Multipath Channels

    Hongmei WANG  Xiang CHEN  Shidong ZHOU  Ming ZHAO  Yan YAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    1020-1023

    In this letter, we propose a partial minimum mean-squared error (MMSE) with successive interference cancellation (PMMSESIC) method in frequency domain to mitigate ICI caused by channel variation. Each detection, the proposed method detects the symbol with the largest received signal-to-interference-plus-noise ratio (SINR) among all the undetected symbols, using an MMSE detector that considers only the interference of several neithborhood subcarriers. Analysis and simulations show that it outperforms the MMSE method at relatively high Eb/N0 and its performance is close to the MMSE with successive detection (MMSESD) method in relatively low Doppler frequency region.

  • Performance of 2IMO Differentially Transmit-Diversity Block Coded OFDM Systems in Time-Varying Multipath Rayleigh Fading Channels

    Ping-Hung CHIANG  Ding-Bing LIN  Hsueh-Jyh LI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:2
      Page(s):
    518-530

    By applying the differential space-time block code (DSTBC) to wireless multicarrier transmission, Diggavi et al. were the first to propose the two-input-multiple-output (2IMO) differentially space-time-time block coded OFDM (TT-OFDM) system. In this paper, we propose three novel differentially transmit-diversity block coded OFDM (DTDBC-OFDM) systems, namely, the FT-, FF-, and TF-OFDM systems. For instance, the TF-OFDM stands for the differentially space-time-frequency block coded OFDM. Moreover, the noncoherent maximum-likelihood sequence detector (NSD), and its three special cases, namely, the noncoherent one-shot detector, the linearly predictive decision-feedback (DF) detector, and the linearly predictive Viterbi receiver are incorporated to the 2IMO DTDBC-OFDM systems. Furthermore, a simple closed-form BER expression for the systems utilizing the noncoherent one-shot detector in the time-varying multipath Rayleigh fading channels is given. Numerical results have revealed that 2IMO DTDBC-OFDM systems employing the noncoherent one-shot detector can obtain significant performance improvement. However, when few antennas are available, the implementation of the linearly predictive DF detector or the linearly predictive Viterbi receiver is necessary for achieving better performance.

  • Interference Cancellation with DFE in Frequency Domain for OFDM Systems with Insufficient CP

    Lan YANG  Shixin CHENG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:12
      Page(s):
    4616-4624

    In OFDM systems, employing a cyclic prefix (CP) as the guard interval is a simple way to combat the inter-symbol interference (ISI) and the inter-carrier interference (ICI), however it reduces the transmission efficiency of the system, especially for some channels with a very long delay spread. In this paper, we consider the OFDM system with insufficient CP, much more efficient than conventional OFDM systems. First, we present the system mathematical model and give the ISI and ICI analysis. Then the signal-to-interference power ratio (SIR) performance is presented. To reduce the ISI and ICI due to the insufficient CP, we develop a minimum-mean-square-error decision feedback equalizer (MMSE_DFE). Based on the MMSE criterion, the optimum feedforward and feedback filter coefficients are derived. For time-varying channel, to avoid brute force matrix inversion in conventional schemes, we propose an adaptive LMS based solution to update the filtering coefficients by tracing the channel variation. Since the high complexity of MMSE_DFE, a reduced complexity scheme, ordered successive partial interference cancellation DFE (OSPIC_DFE), is developed. From the performance comparison between the MMSE_DFE and the OSPIC_DFE, we see that the latter is very near to the former. Finally the simulation shows these proposed methods are highly effective in combating ISI and ICI with low complexity.

  • Phase Error Correction for OFDM-Based WLANs

    Zi-Wei ZHENG  Zhi-Xing YANG  Yi-Sheng ZHU  

     
    LETTER-Network

      Vol:
    E88-B No:9
      Page(s):
    3776-3778

    A novel phase error correction scheme is proposed for the high rate OFDM-based wireless local area networks (WLANs). The proposed scheme makes the system capable of efficiently compensating the whole phase error due to the residual sampling clock offset and frequency offset estimation error after timing and frequency offset compensation, as well as the phase noise.

  • Reducing the Clipping Noise in OFDM Systems by Using Oversampling Scheme

    Linjun WU  Shihua ZHU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:7
      Page(s):
    3082-3086

    In an Orthogonal Frequency Division Multiplexing (OFDM) systems, the Peak to Average power Ratio (PAR) is high. The clipping signal scheme is a useful and simple method to reduce the PAR. However, it introduces additional noise that degrades the systems performance. We propose an oversampling scheme to deal with the received signal in order to reduce the clipping noise by using finite impulse response (FIR) filter. Coefficients of the filter are obtained by correlation function of the received signal and the oversampling information at receiver. The performance of the proposed technique is evaluated for frequency selective channel. Results show that the proposed scheme can mitigate the clipping noise significantly for OFDM systems and in order to maintain the system's capacity, the clipping ratio should be larger than 2.5.

  • An OFDM Scheme with Pre-IDFT/DFT on Frequency-Selective Rayleigh Fading Channels

    Jeong-Woo JWA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:7
      Page(s):
    3073-3077

    In this paper, we propose an OFDM scheme with pre-IDFT/DFT and the frequency domain equalization on frequency-selective Rayleigh fading channels. In this scheme, a two-dimensional block interleaving is used to randomize the correlated noise caused by the frequency domain linear equalizer. Then, the pre-DFT averages the interleaved noise enhancement and improves the error performance of the proposed scheme. Computer simulations confirm the bit error probability of the proposed scheme for multilevel modulations.

  • Robust Time and Frequency Synchronization for OFDM-Based WLANs

    Zi-Wei ZHENG  Zhi-Xing YANG  Yi-Sheng ZHU  

     
    LETTER-Network

      Vol:
    E88-B No:7
      Page(s):
    3047-3049

    A robust time and frequency synchronization scheme is proposed for the high rate OFDM-based wireless local area networks (WLANs). The IEEE 802.11a standardized preamble is efficiently utilized and makes the proposed scheme practical. Simulation results under different channel environments are presented to illustrate the effectiveness of the proposed scheme.

  • Improved Channel Estimation for OFDM Systems with Multiple Transmit Antennas over Time-Varying Multipath Fading Channels

    Hui-Chul WON  Gi-Hong IM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:5
      Page(s):
    2093-2101

    By using multiple transmit antennas, wireless systems have a large capacity in time-varying multipath fading channels. Space-time block code (STBC), space-frequency block code (SFBC), and space-time-frequency (STF) block code are well-known techniques in transmitter diversity schemes. While the SFBC (or the STF block coded) system gives full diversity at frequency-nonselective channels, it breaks down when used in a frequency-selective environment. This is because the SFBC (or the STF block code) scheme disregards frequency selectivity of the channel by assuming that channel frequency responses (CFRs) at adjacent subcarriers are the same. In this paper, we propose efficient channel estimation and symbol decoding methods, which consider the difference between CFRs at the adjacent subcarriers of the SFBC (or the STF block coded) orthogonal frequency division multiplexing (OFDM) system in multipath fading channels. The proposed method gives initial channel information by designing a simple training symbol, and the CFRs at all the subcarriers and the differences between the CFRs are easily calculated by using an interpolation method or a discrete Fourier transform (DFT) operation.

  • Turbo Layered Space Frequency Coded OFDM for High Speed Wireless Communications

    Jong-Bu LIM  Cheol-Jin PARK  Gi-Hong IM  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    463-470

    We propose a new diversity scheme for orthogonal frequency division multiplexing/multi-input multi-output (OFDM/MIMO) systems. The proposed scheme, named turbo layered space-frequency coded OFDM (TLSFC-OFDM), exploits the turbo principle with space hopping (SH). The TLSFC-OFDM system with SH provides a spatial coding so that we can obtain the transmit diversity. We also introduce a successive interference cancellation (SIC) algorithm that requires no ordering and fewer iterations to converge. As a result, this scheme reduces computational complexity. Computer simulation results show that the unordered SIC-based TLSFC-OFDM system outperforms the OFDM/H-BLAST system. It is also shown that the proposed system can operate even with fewer receive antennas than transmit antennas.

  • A Novel Frequency Offset Estimator over Frequency Selective Fading Channels by Using Correlative Coding

    Zhigang CHEN  Taiyi ZHANG  Feng LIU  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    535-540

    A new data-aided carrier frequency offset (CFO) estimation technique is presented for correlative coded OFDM systems in the presence of strong multipath. Different from traditional data-aided estimation techniques, the technique estimates CFO by detecting amplitude of pilots rather than their phase shift and removes effects on CFO estimation due to intercarrier interference by an iterative compensation method. A theoretical analysis of its performance has been derived and simulation results comparing the new technique with a traditional data-aided estimation technique are presented.

  • Channel Estimation and Signal Detection for Space Division Multiplexing in a MIMO-OFDM System

    Yasutaka OGAWA  Keisuke NISHIO  Toshihiko NISHIMURA  Takeo OHGANE  

     
    PAPER-MIMO

      Vol:
    E88-B No:1
      Page(s):
    10-18

    We consider space division multiplexing in a MIMO-OFDM system for high data rate transmission. Channel estimation is very important for suppressing interference and demultiplexing signals. In a wireless LAN system such as IEEE 802.11a, only a few training symbols are inserted in each subcarrier. First, we propose a channel estimation method for a MIMO-OFDM system with two training symbols per subcarrier. The basic idea is to estimate the time-domain channel responses between the transmit and receive antennas. The array response vectors for each subcarrier are calculated by applying a fast Fourier transform to them. We then can obtain the adaptive weights to cancel the interference. We show that employing training symbols having a lower condition number of the matrix used for the channel estimation improves the estimation accuracy. Furthermore, we show the bit error rate for several signal detection schemes using the above estimated channel. It is shown that an ordered successive detection based on an MMSE criterion has excellent performance, that is, it can achieve higher-speed transmissions with a lower transmit power.

  • Subband Adaptive Loading for Combination of OFDM and Adaptive Antenna Array

    Ming LEI  Hiroshi HARADA  Hiromitsu WAKANA  Ping ZHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E87-B No:9
      Page(s):
    2798-2802

    In this letter, we investigate the performance of using subband adaptive loading for the combination of orthogonal frequency division multiplexing (OFDM) and adaptive antenna array. The frequency-domain adaptive loading is very effective to deal with the frequency-selective fading which is inevitable in broadband wireless communications. However, almost all of the existing adaptive loading algorithms are based on "subcarrier-to-subcarrier" mode which may results in awfully large signaling overhead, since every subcarrier needs its own signaling loop between the transmitter and receiver. We investigate the performance of the combination of OFDM and adaptive antenna array when a subband adaptive loading algorithm is used to decrease the signaling overhead. It is shown by simulation results that at the cost of some tolerable performance loss, the signaling overhead of adaptive loading can be greatly reduced.

61-80hit(93hit)